
Using a Multi-Tasking VM for Mobile Applications

Yin Yan, Chunyu Chen, Karthik Dantu, Steven Y. Ko, Lukasz Ziarek
University at Buffalo, The State University of New York

{yinyan, chunyuch, kdantu, stevko, lziarek}@buffalo.edu

ABSTRACT
This paper discusses the potential benifits of switching An-
droid’s single VM per application runtime environment to
a multi-tasking VM environment. A multi-tasking VM is a
type of a Java virtual machine with the ability to execute
multiple Java applications in one memory space. It does so
by isolating the applications to prevent interferences. We
argue that using a multi-tasking VM for mobile systems
provides better control over application lifecycle manage-
ment, more flexible memory management, and faster inter-
application communication. To support this argument, we
discuss a preliminary design, implementation, and evalua-
tion for an alternative to Android’s communication mech-
anism, Binder, and demonstrate the benefits afforded by a
multi-tasking VM.

Keywords
Mobile systems; Multi-tasking virtual machine; Runtime

1. INTRODUCTION
With the adoption in Android, Java-based runtime en-

vironments have become the most popular execution model
for mobile applications. They have many characteristics ide-
ally suited for mobile environments; for example, they use
bytecode and executes it in a VM, making it portable across
different ISAs; they automatically manage memory, allowing
the underlying system to employ efficient memory manage-
ment policies; they are also type-checked, lowering the cost
of development. Due to these benefits, Android now sup-
ports countless devices, ISAs, users, and developers.

The default execution mode for Java is a single VM per
application. This mode of execution is the default in almost
all Java deployments, whether it is on a server, a desktop,
or a mobile phone. However, this is not the only mode of
execution available. Historically, Multi-Tasking VM (Multi-
VM, or simply MVM) [4] has been providing the ability to
run all applications in a single VM. MVM runs each ap-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HotMobile ’16, February 26-27, 2016, St. Augustine, FL, USA
c© 2016 ACM. ISBN 978-1-4503-4145-5/16/02. . . $15.00

DOI: http://dx.doi.org/10.1145/2873587.2873596

plication in an isolation unit called a partition [17], but all
applications run as a single process.

In this paper, we argue that the MVM mode of execu-
tion is the better choice for Android. With the increasing
CPU power and massive on-board memory, it is common
to run multiple cooperative applications on a single device.
The latest Android release, Marshmallow, allows running
more than one foreground activity from different applica-
tions at the same time. Executing all applications in a single
MVM instance gives a global view of application behaviors
with regards to system resources such as memory and I/O.
This global view allows the MVM to better accommodate
more application requests and efficiently manage available
resources. Additionally, running all applications in a single
process simplifies communication between applications; the
VM can avoid context switches and copying data from one
memory space to another.

To concretely demonstrate these benefits, we first examine
an MVM architecture, and discuss the feasibility of replacing
Android’s VM (Dalvik/ART) with an MVM. We examine all
the salient features of Android’s VM and compare how an
MVM can realize the same features. Our conclusion is essen-
tially that there is no feature that cannot be replicated in an
MVM architecture. To understand the advantages, we pick
one essential sub-system (inter-application communication),
and show how an MVM can implement the same feature
more efficiently. Our overall findings are that (i) an MVM
architecture has tangible benefits in comparison to existing
Android, (ii) the changes necessary to use an MVM are only
required in the framework level, and (iii) all the benefits can
be made transparent to applications. Although single pro-
cess execution for multiple programs itself is not a new idea
(e.g., Singularity [7, 8, 9]), our focus is not on designing a
new OS, but on replacing a component in an existing OS to
demonstrate additional benefits.

2. MULTI-TASKING VM
The use of an MVM architecture was first proposed to

achieve better scalability as well as security for server style
Java applications [4]. Later, MVM was also expanded to
support multiple users instead of only a single user [6]. The
design philosophy of MVM is similar to Singularity [7, 8,
9], a dependable and robust micro-kernel system built with
a type-safe language. Singularity separates its computation
units as Software Isolated Processes (SIPs)—each program,
device driver, or system extension is executed in its own
SIP under the same address space. The inter-process com-
munications are enabled by typed bi-direction channels. To



Android Dalvik/ART Multi-tasking VM

Application isolation

The access of sensitive framework APIs is
controlled with manifest configuration, and
file permissions and other application
resources are protected per process.

An OS-like access of control unit can be implemented
in MVM.

Application initialization
Forks zygote, creates a new VM instance in a
new process, and loads application classes.

Creates a new partition for an application, configures
a time slice for the application that runs in the newly
created partition, and loads application classes.

Application context switch
Switching between processes requires to
switch memory addresses, page tables and
kernel resources, and flush processor caches.

Threads switching between different partitions only
requires switching processor states, e.g., scheduling
counter or register contents, which can be done fast
and efficiently.

Application termination

The exit of an application components do not
terminate the process of the application. The
process is killed only when its user manually
kills it or the system runs low on memory.
The Low Memory Killer (LMK) is responsible
for selecting and killing processes.

Applications are executed in their dedicated
partitions. MVM provides VM-level APIs to enforce
all of the threads in one partition to exit, and reclaim
their memory and other resources.

Application suspension and
resume

The OS scheduler switches between processes.
The VM controller switches partitions in the same
process.

Intra-app communication Message passing constructs Message passing constructs

Inter-app communication Android Binder IPC Shared memory in MVM

System service
Executed in one dedicated process, accessed
via Binder calls

Executed in one dedicated partition, accessed via
inter-application communication mechanism.

Memory Management
Virtual memory with per-app garbage
collection.

A single memory address space with enforced
memory boundaries and configurable garbage
collection strategies for different partitions.

Table 1: Application Management Between Android’s Dalvik/ART and MVM

OS Kernel Scheduler

VM Controller

Partition #1
OS thread

Partition #1
OS thread

Partition #2
OS thread

Partition #2
OS thread Partition #3

dispatcher

Partition #3
partition thread

Partition #3
partition thread

GC 1 for Par #3
(VM-level partition)

GC 2 for Par #1,2
(VM-level partition)

(a) Time Partition

GC 1

GC 2GC 1

GC 2

Partition #1 Partition #2 Free Space

GC 1

Partition #3 #3

GC 2GC 1

Start

Add  Par#3

Enlarge heap for 
Par#3

Reclaim Par#1

Partition #1 Partition #2 Partition #3

Partition #1 Partition #2

Partition #2 Free SpacePartition #3 #3

(b) Memory Partition

Figure 1: MVM Partition Architecture

guarantee the safety and correctness, all application code is
associated with manifest configurations for static validation
and analysis.

Similarly, MVM has the ability to execute multiple run-
time environments without interferences under one single
VM instance. The spatial and temporal isolations can be
achieved via class loading [3, 5] or resource partitioning [11].
In our discussion, we will focus on a resource-partitioned
MVM, Fiji VM [17, 12], which isolates the interferences
by partitioning applications into execution units, and en-
forces application lifecycle management and memory bound-
aries through the use of a VM controller. For the inter-
application communication, MVM can develop communica-
tion primitives at the VM level over region-based memory,
and higher-level protocols are more easily encoded without
necessitating copying. More details will be discussed in
Section 2.1 and Section 2.2. We use the term “partition”
to mean the execution unit in MVM in the later sections.
Compare to Singularity, MVM does not provide built-in ver-
ification tools. However, it defines sophisticated interfaces
for different types of resource management. For example,

the CPU cycles and memory boundaries can be either stati-
cally configured or dynamically adjusted between partitions
via the VM controller, the controller also facilitates finer-
grained control for handling interrupts, task preemption,
and memory reclamation.

The rest of section explores the application features that
are affected by replacing Android’s VM with an MVM and
some of the added benefits of doing so. To explain the func-
tional differences, we provide a side-by-side comparison of
the basic features that are essential to Android’s Java Run-
time Environment and their analogues in MVM in Table 1.
We categorize these features into three major aspects: ap-
plication lifecycle management, memory management and
inter-application communication.

2.1 Application Lifecycle Management
MVM manages the lifecycle of its applications by par-

titioning each application’s tasks into separate time slots.
Thus, application execution is isolated within its own tem-
poral partition. MVM provides VM-level APIs to allow a
VM controller to manipulate the initiation, suspension, and



termination of the tasks in each partition with fine-grained
control. Each partition can create OS level threads, which
underpins Android created threads. All threads, regardless
of which partition they belong to, are in the same OS pro-
cess.

MVM can provide various scheduling options to man-
age threads that belong to different partitions, exposing
the trade-off between fine-grained control and management
overhead. The simplest way to manage partition threads
is to directly leverage thread scheduling from the operat-
ing system; the threads of each partition are grouped and
scheduled with fixed-length time slices via operating system
thread scheduling. The threads in the current active par-
tition are scheduled within partition time slices. When the
current partition exceeds its time slice, the VM controller
suspends all threads in this partition and resumes threads
in the next partition. Figure 1a shows various scheduling
options potentially available. Partition 1 and 2 are utilizing
direct OS thread scheduling for their execution.

Alternatively, MVM can also provides VM-level schedul-
ing for better control with a task dispatcher that manages
a thread pool. The threads in a partition are scheduled
through the dispatcher as a VM partition thread, as shown
with partition 3 in Figure 1a. The VM controller can manip-
ulate the partition lifetime via VM-level APIs to apply dif-
ferent scheduling policies of the task dispatcher. The execu-
tion of the task dispatcher introduces additional complexity;
additional safe points 1 need to be checked during execution
to allow the VM controller to safely suspend, resume, and
terminate threads from the dispatcher. In a nutshell, direct
OS thread scheduling is lightweight but with less control.
The VM-level scheduling approach requires the execution of
the dispatcher with additional safe point checking, but it
provides better control. Normally, MVM supports a hybrid
approach, allowing the developers to choose how their par-
titions are scheduled based on performance requirements.

The biggest benefit of performing application scheduling
at the VM level is that context switches between applica-
tions are extremely fast. This occurs because the TLB and
caches are not flushed—the cost of a context switch is simply
the cost of switching between threads. In a loosely coupled,
event driven system like Android, where many applications
communicate, this has an additional benefit—namely a hot
cache. Switching at a communication point has a good prob-
ability of retaining communication structures in the cache,
yielding additional performance benefits. Singularity also
enjoys fast context switching.

2.2 Application Memory Management
Although MVM provides a dynamically configurable mem-

ory management at runtime, it enforces memory boundaries
for space isolation. Namely, one application cannot allocate
objects or hold references to other application’s heap mem-
ory. To reclaim dead objects, each application can have its
own GC (typical in a partitioned MVM), but there maybe
one GC that is shared by many applications (typically in an
MVM that uses classloader based isolation). MVM may use
a combination of GC approaches and even leverage other

1A safe point is a compiler injected check, to ensure GC runs pe-
riodically by suspending threads. This can be leveraged to bound
the amount of time needed to suspend a thread. We note that
for a given architecture, this bound can be calculated precisely,
affording an added level of determinism to the system.

automatic memory management schemes, like scoped mem-
ory [2] (typical in more specialized MVMs). The key ob-
servation is that in all MVM schemes, the applications are
executed in the same address space and it is up to MVM to
ensure that heap boundaries are enforced. Figure 1b demon-
strates basic heap management scenarios in MVM memory
management for a partitioned MVM. In this case we assume
a partitioned MVM, which assigns GCs to monitor poten-
tially more than one partition 2.

Like Android’s Dalvik/ART, each partition starts with a
memory quota (the application’s initial heap size—this can
be uniform across all applications or can be tailored based on
the application’s need), and the heap size can be increased
at runtime, if necessary. The initiation or termination of a
partition induces the allocation or reclamation of the heap
memory for that partition, in much the same way as appli-
cation termination on Android causes a reclamation of the
host VM and its assigned heap memory.

The main benefit of an MVM GC scheme is that MVM
can arbitrate memory allocation requests from different ap-
plications executing in different partitions. As a direct con-
sequence, MVM can not only decide when, but also where
to run the garbage collection. This is especially useful for
managing memory on a memory constrained device. Lets
consider what happens on Android when memory usage is
low. In such situations, Android triggers its Low Memory
Killer (LMK) to selectively kill applications. This is done
via an importance metric. Crucially, the Low Memory Killer
does not understand how much “garbage” a given applica-
tion has resident in its heap memory. To skirt this issue,
Android allows the OS to trigger GC events in a given VM.
However, once the LMK is triggered, memory is reclaimed
on an application level.

In MVM, the VM controller understands the memory con-
sumption of each application. It can adjust heap boundaries
between partitions to respond to shortage of memory in indi-
vidual partitions. Additionally, MVM can even trigger GC
on a partition whose app is currently not active and reallo-
cate the collected memory to another partition that requires
more memory. Thus, the memory requests are satisfied with-
out sacrificing the correctness of the applications, and with-
out resorting to drastic measures such as terminating other
applications. What this means is that the system as a whole
can make more holistic memory management decisions. We
believe this will also allow for more programmatic defini-
tions of global memory management schemes instead of the
heuristic-based LMK mechanism. It is this global memory
management that differentiates MVM from OS based solu-
tions like Singularity.

2.3 Inter-App Communication
Android applications rely on Android’s Binder IPC mech-

anism for communication and data transfer. For example,
Android’s messaging objects, Intent or Message, transfer
their data object Bundle via Android’s Binder calls. Since
Binder calls require a data copy between the communicating
applications, it is limited in the size of data it can transfer.
To exchange a large chunk of data, developers have to use
an external medium such as ContentProvider or ashmem.

2This is useful when you may want to support different types of
GC. For instances a real-time GC for applications with timing
guarantees and a more throughput-oriented GC for multimedia
applications.



App BApp A

Client

Kernel

Binder 
Driver

Server

/dev/ashmem/xx

fd 
object

fd 
object

  

(a) Android’s ashmem

App BApp A Multi-VM 
Controller

  
Message 

Dispatcher

struct 
shared_memory

Message Queue

Sender

Looping Thread

Receiver

MSG

MSG

(b) Multi-VM Shared Memory

Figure 2: Communication with Shared Memory

Nevertheless, Binder is a building block leveraged by both
ContentProvider and ashmem, not for large data transfer,
but for exchanging small meta data required for data trans-
fer.

Thus, our preliminary exploration in this paper takes a
deeper look at Binder and replaces it with an alternative
mechanism in MVM. We discuss this in more detail in the
next section. Below, we briefly lay out our thoughts on how
we could replace ContentProvider and ashmem in MVM.
ContentProvider is one of the core components of an An-

droid application; it encapsulates data and provides stan-
dard interfaces that allows data in one process to be trans-
ferred to code running in another process. It is designed for
data persistence in mind, and the access of data via Con-

tentProvider interfaces requires expensive I/O operations.
A ContentProvider implementation in MVM would look
much the same as it does in Android itself. Since the pri-
mary requirement is persistence, the MVM does not provide
any added benefit since the underlying file system governs
the majority of the access costs. We observe, however, that
typical kernel permission mechanisms need to be move to the
MVM to retain the semantics that Android expects. For in-
stance, associations between file descriptors and the process
IDs would need to be maintained.

In contrast, ashmem is a Android Linux module that facil-
itates direct memory sharing between processes. As shown
in Figure 2a, ashmem allows applications to allocate a shared
memory region, map it to a physical memory address, and
handle it as an file descriptor. Since the file descriptor is cre-
ated via mmap(), it is only valid in its own process. To share
the file descriptor, developers have to wrap it with an Mem-

oryFile instance, and pass the MemoryFile object through
a Binder call. Applications that hold the reference to the
same MemoryFile instance have to cooperate with others ex-
plicitly via Android’s communication mechanism to use the
memory region abstracted by the file descriptor.

Our observation is that ashmem-like functionality can be
implemented in an MVM very naturally, using our Binder

replacement discussed in the next section. Our Binder re-
placement is essentially a shared memory substrate and pro-
vides a common interface that applications can leverage to
communicate. We illustrate how we can build such a mech-
anisms in the next section and show that it can outperform
kernel-based approaches for data transfer in Section 4.

3. MVM INTER-APP COMMUNICATION
To illustrate the power of MVM, we show in this section

how easily we can provide an inter-application communi-
cation mechanism without crossing the process boundary
between applications. Figure 2b shows one possible design
that we implement to replace Android’s Binder. The de-
sign is based on asynchronous message passing with shared
memory. As Figure 2b shows, each application has a looping
thread associated with a message queue in its own partition.

Other threads that have a reference to the message queue
can send messages to the looping thread by synchronizing
with the message queue. Unfortunately, MVM isolates ap-
plications in both time and space at runtime, the sender
thread in one partition cannot directly refer to the message
queue in another partition. The only way to do the inter-
partition references is using native objects in a controlled
manner.

Thus, our design utilizes inter-partition locks and shared
memory regions as part of the functionalities in the internal
MVM controller. MVM only exposes Java APIs to the appli-
cation layer, encapsulating the native code. Our communi-
cation mechanism consists of three main constructs, imple-
mented at the VM controller level: struct shared_memory,
Message, and MessageDispatcher.
struct shared_memory is a shared memory object, im-

plemented in native code. It consists of a pointer to shared
data, a reference counter, a pthread lock, and a conditional
variable. The lock and condition variable are used for syn-
chronization between read and write operations from differ-
ent partitions to ensure consistence of the shared data.
Message is a messaging object class. The instantiation of

a Message object associates the object with the allocation of
the native struct shared_memory. Since we do not want to
expose the native object directly to developers, we decided
that the Message instances must be instantiated and recy-
cled via MessageDispatcher. Code 2 presents the primary
functions of the Message, it has a Pointer field that points
to the shared_memory variable.
MessageDispatcher is a Java singleton class that contains

both Java and native interfaces, as shown in Code 1. It
controls the initiation and reclamation of the Message ob-
jects, and has the references to the message queues in all
of the partitions. MessageDispatcher is responsible for dis-
patching Message objects to the receiving partitions. No-
tice that MVM cross-partition references are forbidden, the
Message objects from sender partition can not be directly
referenced in the receiving partitions. Thus, when a sender
calls MessageDispatcher.sendMessage(msg) function, the
MessageDispatcher first updates the reference counter of
shared_memory. Then, it creates a new Message object in
each receiving partitions, and assigns the Pointer fields of
these newly created Message objects. By doing this, each
receiving partition has a Message object in its own heap
memory that points to the same shared_memory. Then,
MessageDispatcher can recycle the Message object from
sender. After the receivers process the Message objects in
the looping thread, they decrease the reference counter on
shared_memory. When the reference counter is updated to
zero, shared_memory is freed.

Since our inter-application communication is enabled via
shared memory and native locks, additional care needs to
be taken to insure that the native objects are recycled, and
to limit their number allocated at runtime similar to kernel-



class MessageDispatcher {
public static MessageDispatcher getInstance();
...
public Message getMessage() { ... }
public void recycleMessage(Message msg) { ... }
public void sendMessage(Message msg) { ... }
private static native void allocate_msg(Pinter msg);
private static native void free_msg(Pointer msg);

}

Code 1: MessageDispatcher

class Message {
Pointer shared_memory
...
/*package*/ Message(){ ... }
public Byte[] read(int s, int l) { ... }
public void write(int s, int l, Byte[] d) { ... }
/*package*/ static void allocate(Pointer pointer);
/*package*/ static void free();

}

Code 2: Message

struct shared_memory {
char* id;
void* data;
int ref_counter;
pthread_mutex_t lock;
pthread_cond_t cond;

};
typedef struct shared_memory shared_memory;
//A list holds all shared_memory variables
shared_memory* shared_memory_list;

Code 3: Native struct: shared memory

based process isolation. To achieve this, we use an object
pool. This requires enforced reclamation of shared memory
and native locks at the VM level, but we note that our choice
of MVM supports such reclamation.

Singularity [7] provides bi-directional, two-party, typed
channels that offer fast communication. More complex pro-
tocols can be implemented by using multiple channels. For
instance, encoding ring-buffered communication requires the
use of an intermediate channel and a thread to encode the
buffer. Unfortunately, when multiple channels are leveraged,
copying overhead occurs between channels. We note, how-
ever, that Singularity could be extended to support different
kinds of channels (e.g., ring-buffered channels) to mitigate
this, but at the cost of adding complexity to the static veri-
fication process.

4. PRELIMINARY RESULTS
To demonstrate the benefit of our proposed architecture,

we have conducted preliminary experiments that measure
raw communication costs. Our goal is to compare the over-
head of data transfer across three mechanisms—Android’s
Binder, Android’s ashmem, and the shared memory mecha-
nism of an MVM. We have performed all experiments using
a Google Nexus S with Android v4.1.2 (Jelly Bean) with
the performance governor. For MVM experiments, we have
used Fiji MVM integrated with Android v4.1.2. Our work-
load consists of two applications, one sender and one re-
ceiver, and we vary the amount of data transferred between
these two applications. We record a timestamp before the
sender sends data, and another timestamp after the receiver
receives the data. We compute the communication cost as
the difference of the two timestamps. We collect 500 these
pairs of timestamps for each data size.

Figure 3 shows the average data transfer costs for the
three mechanisms with different data sizes. Since Android’s
Binder transfers actual data through /dev/binder in ker-
nel by copying the data from the sender to the receiver, it
is expected that its performance increases linearly with the
data size. The other two methods are more or less constant,

0

2

4

6

8

10

0 100 200 300 400 500

T
im

e
(m

s)

Data/Shared Memory Size (kb)

Android Binder
Android Ashmen

Fiji MVM Shared Memory

Figure 3: Communication Cost with Increasing Data Sizes

since there is no actual data transferred between two appli-
cations. They only involve a context switch between two
applications. However, we observe that the data transfer
overhead of Android’s ashmem is around 5 times slower than
that of Fiji MVM, because Android runs each application in
a separate process with a dedicated VM instance; the con-
text switch between two processes is generally much more
expensive than switching between two threads, even if those
threads reside in different partitions.

5. DISCUSSION
While MVM brings the advantages described in previous

section, it has the following disadvantages compared to using
a single VM per app.

Access Control Since MVM runs all applications in a
single process, it needs to have its own access control mech-
anism for shared resources, such as hardware devices and
data files. This adds runtime overhead and complexity in
terms of implementation as well as access control policy def-
inition.

Isolation MVM provides spatial and temporal isolation
to avoid interferences between applications in the Java run-
time. Even if an application is misbehaving or exhibits a
Java-side bug, the MVM controller can tear down the mal-
functioning application and its associated partition without
affecting the others. However, native code requires sepa-
rate mechanisms for isolation and misbehavior as discussed
below.

Native Code Native code is a major concerns for an
MVM. Native code provides the capabilities for direct mem-
ory access to anywhere in the memory address space, giving
rise to a potential mechanism to violate the MVM isolation.
Similarly, objects allocated in native code are not subject to
the reclamation. Both these aspects pose challenges to the
adoption of the MVM for Android.

In fact, Singularity [7, 8, 9] has the same challenges and



overcomes them with code verification. Each piece of na-
tive code in Singularity must provide a specification and be
verified against this specification. In Singularity, there is
a limited set of hardware-related implementations that are
written in C++ and assembly as privileged instruction. Be-
cause type and memory safety assure the execution integrity
of functions, Singularity can place privileged instructions,
with safety checks, in trusted functions. For example, priv-
ileged instructions for accessing I/O hardware can be safely
in-lined into device drivers.

For MVM, such an approach is also a viable solution. We
believe this can be done by abstracting away common na-
tive functionality into libraries. As a concrete example, we
are currently investigating certain communication protocols
on top of more specialized MVM communication primitives.
Priority rollback protocol [18] and wait free pair transac-
tion [1] can be used for fast inter-partition communication
with bounded latency and known memory bounds. We be-
lieve we can leverage both as the foundation for building
Android communication primitives.

6. RELATED WORK
The canonical approach to multitasking in the Java pro-

gramming language is to start each application in a new
JVM [10]. This typically requires spawning a new operating
system process for each application and protect the appli-
cation from each other, but uses large amounts of resources
(memory, CPU time) and makes inter-application commu-
nication expensive.

Android’s VM is this type of a virtual machine. Dalvik
VM was introduced when the first version of Android was
released on 2008. It takes its own bytecode format and exe-
cutes them on mobile devices. To provide isolation between
applications, Android applications run in their dedicated
VM instances within separate OS processes. When an ap-
plication is started, the zygote process forks itself, creates a
new VM instance, and duplicates the preloaded classes and
resources in a new process for runtime. To achieve hardware-
specific optimization, Google replaced Dalvik VM with An-
droid Runtime (ART) in Android v5.0 (Lollipop). One of
the major changes is that ART includes an ahead-of-time
compiler (AOT) which compiles the Dex bytecode to native
ELF executable. The compilation is done when the app is
installed. An alternative to this model is to execute appli-
cations in one Multi-VM (MVM), which we explore in this
paper.

MVMs have been adapted for real-time applications, where
it is hard to preserve predictability in the presence of dy-
namic memory management [13]. Our prototype is built
on the top of the Fiji MVM [17, 12], which provides pre-
dictable temporal isolation with real-time capabilities. Fiji
MVM allows us to statically configure the memory bounds
for its payloads at compile time. Similarly, KESO [14] is
another MVM designed for statically configured resource-
constrained embedded systems. It uses ahead-of-time knowl-
edge to generate a Java runtime that is specifically tailored
towards a given application and configures spatial isolation
and memory protection statically.

7. CONCLUSION AND FUTURE WORK
In this paper, we have explored the feasibility of using

MVM for Android. Unlike the existing mode of execution

where an application runs within its own VM, MVM runs all
applications in a single process. This architecture enables
fine-grained control over application lifecycle and memory
management and also reduces the context switching cost sig-
nificantly as there is no real context switch happens across
processes. To demonstrate these benefits, we have presented
a design of an inter-application communication mechanism
using an MVM. This can replace Android’s Binder IPC
mechanism. Our performance comparison shows that our
design reduces the cost of communication significantly. As
part of our ongoing work, we are integrating the Fiji MVM
with RTDroid [16, 15] to provide a mixed-criticality envi-
ronment for multiple applications.

Acknowledgments: This work has been supported in
part by an NSF CAREER award, CNS-1350883.

8. REFERENCES
[1] E. Blanton and L. Ziarek. Non-Blocking Inter-Partition

Communication with Wait-Free Pair Transactions. In
JTRES, 2013.

[2] G. Bollella and K. Reinholtz. Scoped Memory. In ISORC,
2002.

[3] G. Czajkowski. Application Isolation in the Java Virtual
Machine. In OOPSLA, 2000.

[4] G. Czajkowski and L. Daynés. Multitasking without
Comprimise: A Virtual Machine Evolution. In OOPSLA,
2001.

[5] G. Czajkowski, L. Daynès, and N. Nystrom. Code Sharing
among Virtual Machines. In ECOOP, 2002.

[6] G. Czajkowski, L. Daynès, and B. Titzer. A Multi-User
Virtual Machine. In USENIX ATC, 2003.

[7] M. Fähndrich, M. Aiken, C. Hawblitzel, O. Hodson,
G. Hunt, J. R. Larus, and S. Levi. Language Support for
Fast and Reliable Message-based Communication in
Singularity OS. In EuroSys, 2006.

[8] G. Hunt, M. Aiken, M. Fähndrich, C. Hawblitzel,
O. Hodson, J. Larus, S. Levi, B. Steensgaard, D. Tarditi,
and T. Wobber. Sealing OS Processes to Improve
Dependability and Safety. In EuroSys, 2007.

[9] G. C. Hunt and J. R. Larus. Singularity: Rethinking the
Software Stack. SIGOPS Oper. Syst. Rev., 41(2):37–49,
Apr. 2007.

[10] Java Language and Virtual Machine Specifications.
https://docs.oracle.com/javase/specs/.

[11] M. Jordan. Resource Partitioning in a JavaTMOperating
Environment. Technical report, 2006.

[12] F. Pizlo, L. Ziarek, E. Blanton, P. Maj, and J. Vitek.
High-Level Programming of Embedded Hard Real-Time
Devices. In EuroSys, 2010.

[13] M. Stilkerich, I. Thomm, C. Wawersich, and
W. Schröder-Preikschat. Tailor-made JVMs for Statically
Configured Embedded Systems. Concurr. Comput. : Pract.
Exper., 24(8):789–812, June 2012.

[14] I. Thomm, M. Stilkerich, C. Wawersich, and
W. Schröder-Preikschat. KESO: An Open-source
multi-JVM for Deeply Embedded Systems. In JTRES,
2010.

[15] Y. Yan, S. H. Konduri, A. Kulkarni, V. Anand, S. Ko, and
L. Ziarek. RTDroid: A Design for Real-Time Android. In
JTRES, 2013.

[16] Y. Yan, S. H. Konduri, A. Kulkarni, V. Anand, S. Ko, and
L. Ziarek. Real-Time Android with RTDroid. In MobiSys,
2014.

[17] L. Ziarek, , and E. Blanton. The Fiji MultiVM
Architecture. In JTRES, 2015.

[18] L. Ziarek. PRP: Priority Rollback Protocol – a PIP
Extension for Mixed Criticality Systems: Short Paper. In
JTRES, 2010.


